Object Detection in Video with Spatiotemporal Sampling Networks

نویسندگان

  • Gedas Bertasius
  • Lorenzo Torresani
  • Jianbo Shi
چکیده

We propose a Spatiotemporal Sampling Network (STSN) that uses deformable convolutions across time for object detection in videos. Our STSN performs object detection in a video frame by learning to spatially sample features from the adjacent frames. This naturally renders the approach robust to occlusion or motion blur in individual frames. Our framework does not require additional supervision, as it optimizes sampling locations directly with respect to object detection performance. Our STSN outperforms the state-of-the-art on the ImageNet VID dataset and compared to prior video object detection methods it uses a simpler design, and does not require optical flow data for training. We also show that after training STSN on videos, we can adapt it for object detection in images, by adding and training a single deformable convolutional layer on still-image data. This leads to improvements in accuracy compared to traditional object detection in images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spatiotemporal model with visual attention for video classification

High level understanding of sequential visual input is important for safe and stable autonomy, especially in localization and object detection. While traditional object classification and tracking approaches are specifically designed to handle variations in rotation and scale, current state-of-the-art approaches based on deep learning achieve better performance. This paper focuses on developing...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Video Salient Object Detection Using Spatiotemporal Deep Features

This paper presents a method for detecting salient objects in videos where temporal information in addition to spatial information is fully taken into account. Following recent reports on the advantage of deep features over conventional handcrafted features, we propose the SpatioTemporal Deep (STD) feature that utilizes local and global contexts over frames. We also propose the SpatioTemporal C...

متن کامل

روشی جدید برای اختفای خطا در فریم‌های ویدئو با استفاده از شبکه‌ عصبی RBF

Transmission of compressed video over error prone channels may result in packet losses, which can degrade the image quality. Error concealment (EC) is an effective approach to reduce the degradation caused by the missed information. The conventional temporal EC techniques are always inefficient when the motions of the video object are irregular. In this paper, in order to overcome this problem,...

متن کامل

Spatiotemporal Closure

Spatiotemporal segmentation is an essential task for video analysis. The strong interconnection between finding an object’s spatial support and finding its motion characteristics makes the problem particularly challenging. Motivated by closure detection techniques in 2D images, this paper introduces the concept of spatiotemporal closure. Treating the spatiotemporal volume as a single entity, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018